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The extent to which the peak heights of difference maps are reduced by termination of the Fourier series 
and by thermal smearing has been investigated. For this purpose, the peaks are represented by Gaussian 
distributions. Series termination and thermal smearing can be considered as convolution operations which 
can be reversed by corresponding deconvolution operations to reconstruct the true peaks. Deconvolution 
for thermal smearing can be exactly performed with three-dimensional Gaussian distributions. With 
respect to peak heights, deconvolution for series termination can be exactly performed with the spherically 
symmetric, and approximately performed with any Gaussian distributions. With five hypothetical peaks 
the expected deconvolution effects have been examined, and with four peaks of published X -  N maps, it 
is shown how the peak heights can be approximately corrected for the two convolution effects. 

Introduction 

As a rule, the molecule at rest, i.e. the electron density 
distribution of the equilibrium configuration of the 
nuclei, is the object of quantum-chemical calculations 

of molecular density distributions. Experimental inves- 
tigations of molecular density distributions, performed 
by means of X-ray diffraction on crystals, have the 
same object, but the densities obtained experi- 
mentally and represented by Fourier synthesis are im- 
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paired by at least two effects: series termination and 
thermal smearing. Thermal motions of the atoms and 
the limited Ewald sphere make it impossible to meas- 
ure all the Fourier coefficients necessary to carry out 
the synthesis. With investigations of bond densities, 
the effect of series termination is much reduced if 
difference densities of some type (deformation densities, 
valence densities) are calculated. In this way, the effect 
of the termination ripples of the atomic maxima is 
eliminated; this effect would otherwise falsify the dis- 
tribution of the bond densities. Nevertheless, there is a 
termination error in the synthesis of difference maps 
which reduces the peak heights and broadens the peaks. 
The thermal motions of the atoms in crystals cannot 
be suppressed and X-ray diffraction investigations are 
known to yield only the thermal average of the density 
distribution. Thermal smearing also reduces the peak 
heights and broadens the peaks. Both effects, series 
termination and thermal smearing, are to be considered 
as deficiencies inherent in the X-ray method as a tool 
for determining electron density distributions. Hence, 
efforts have to be made to correct for these two effects 
and to restore the 'true' density distribution as far as 
possible. 

The aim of this paper is to estimate the heights of the 
'true' peaks by simple means. For this purpose we 
represent the peaks by Gaussian distributions. It is then 
simple to correct the peak for thermal smearing. The 
correction for series termination can, however, be 
performed only for the peak height and not for the 
shape. Therefore, in this paper we neglect the peak 
shapes. As the heights constitute a characteristic 
property of difference density maps this restriction 
does not appear to be too serious. 

Deconvolution for series termination 

The peak, calculated with a finite Fourier series, can be 
represented by the convolution product of the 'true' 
peak and a termination function (Lipson & Cochran, 
1953;* Rees, 1976). (By the 'true' peak we mean that 
peak which is not affected by series termination.) 
Hence, we can regard the reconstruction of the true 
peak as a deconvolution operation which reverses the 
convolution operation of series termination. 

The investigation of the problem with Gaussian dis- 
tributions showed, however, that it is simpler to deal 
with the Fourier integral with finite limits than to deal 
with the convolution integral. Let us consider a three- 
dimensional Gaussian distribution of the density 

Q(x)--q(2~)-3/2(det V) -1/2 exp(- -~-xrV-lx) ,  (1) 

where V is the smearing tensor by which the charge q is 
distributed. The Fourier transform of this distribution 

is f(h) = q exp ( - 27~2hrVh). (2) 

* Because of a sign error, the fact that the resulting integral is a 
convolution integral is not evident in Lipson & Cochran's calcula- 
tion. 

Firstly, we restrict our calculation to the special case of 
an isotropic smearing tensor with the diagonal com- 
ponents V. We use h = [hi, h 2 = h 2 + h 2 + h 2, and, in 
agreement with (1), obtain the inverse Fourier trans- 
form, 

Q(x) = q exp ( -  2n2h 2 V) exp ( -  2nihrx)dh. (3) 
- - 0 0  

The termination of the Fourier series corresponds to 
integration to a finite limit hmax=(2 sin 0ma0/2. (The 
difference between the finite series and the finite inte- 
gral does not matter here: the single motif, affected by 
finite integration and packed in a three-dimensional 
array, leads to zero Fourier coefficients precisely when 
h >  hmax.) We introduce polar coordinates into recip- 
rocal space. Let r 2=  x 2 -F x 2 4-x 2 and r be the distance 
from the centre of the distribution; with the substitu- 
tion formula given by Ryshik & Gradstein (1963, p. 217) 
we obtain for a finite upper limit 

(*hmax sin (2nrh) 
Q(r) = q4rc Jo  h 2 exp ( -  2rc2h 2 V) 2nrh dh . (4) 

An analytic solution for (4) does not appear to exist. 
However, for the peak maximum, r = 0, there is a solu- 
tion with the substitution nh]/(2V)=t (Gr/Sbner & 
Hofreiter, 1957, p. 109). Evaluation (for r = 0 )  leads to 

2 (--tm.x)], (5) Q(O)=q(2nV)- 3/2[erf (tmax)--~--~ tmax exp  2 

where 

erf (tmax)=~7~ f~aXexp (-t2)dt 

is the error function. For a finite limit hmax, the square 
bracket in (5) is less than one and the peak maximum is 
correspondingly reduced. For hmax = oo, tmax = OO, (5) 
represents a special case of(l). The solution (5) can also 
be obtained from the convolution integral, as was done 
by Coppens & Lehmann (1976).* 

For an anisotropic smearing tensor V no analytic 
solution of the integral appears to exist. Hence, we have 
to be satisfied with an approximate solution. Without 
loss of generality we consider V to be diagonal. If we 
want to express the anisotropic solution by an average 
V for the components Vii, (1) shows that this average 
must have the form 

V / i - g  B(V11 V22 V33) 1/3. (7) 

The exact solution (1) is approached for hmax ~ oo only 
with (7). With large anisotropy and for small values of 
hmax the approximation (7) in itself proves to be in- 
sufficient. In order to obtain a better approximation 

* These authors have calculated numerical results and have 
represented them in the form of diagrams. In the present work we 
were initially unaware of Coppens & Lehmann's (1976) paper, and 
we credit the idea of fitting isotropic Gaussians to observed peaks to 
these authors. 
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for a finite volume of integration, we consider the ap- 
proximation (7) in a volume of integration for which 
the exact solution is known. This is a cube with edges 
2hma x in length. With the substitution /(2V/i)xhma x= 
h max, the solution for x = 0 is given by 

3 Chmax 
Q(0) = q 1-[ 1 | exp(-2n2h2Vu)dhi 

• = w - hmax 

3 
=q(2rc)-a/z(v11V22Vaa)-l/Zi-Ierf(timax) . (8) 

i=1 

Since V/i is contained in h m~x, the approximation (7), 
- - ,  8hmax, will V.=V for a finite volume of integration, 3 

deviate from the exact solution (8). Since we know the 
exact solution we can calculate this deviation. The 

~7~hmax, which is our spherical volume of integration, 4 3 
main concern, is exactly embraced by the cube volume 
of integration. Hence, we shall obtain a sufficient ap- 
proximation for the spherical volume if we use the 
deviations which we observe with the cube volume in 
order to calculate the corrections for the spherical 
volume. Thus, for a diagonal anisotropic smearing 
tensor V we obtain the approximate solution 

0(V, sphere)= Q(V sphere) Q(V, cube) 
' Q(V, cube)" (9) 

On the right-hand side of (9) all quantities can be cal- 
culated" Q(V, sphere) from (5) with V =V,  O(cube) from 
(8) exactly, and from (8) with Vu=V. Since the error 
function (6) is available for most computers as a library 
routine, the numerical evaluation of (9) is straight- 
forward. 

In order to carry out the deconvolution for series 
termination, at least two observed peak heights for 
two limits of termination are necessary. Then, the 
Gaussian distribution, terminated at the two limits, is 
fitted to the observed peak heights as well as possible. 
The parameters are the charge q and the components 
Vii. When the fitting is completed the maximum of the 
true peak is obtained from (1) with x=0 .  

Though not strictly necessary, it is better to have 
more than two observed peak heights. This does not 
imply that extremely high-angle data must be available, 
but only that the syntheses are calculated for three or 
more limits of termination. A good fitting of the 
terminated Gaussian distribution to the observed peak 
heights is essential; less important is the exact repro- 
duction of the anisotropy of the observed peak. As a 
rule, the restriction Vll = V22 can be employed, and 
often an isotropic smearing tensor will serve. 

Deconvolut ion for thermal smearing 

The dynamic density is the convolution product of the 
true peak and the thermal smearing function. In the 
harmonic approximation this function is a Gaussian 
with the covariance matrix U (vibration tensor). When 
the density distribution of the true peak is also Gaus- 

sian, the solution of the convolution integral is known. 
The dynamic density is again a Gaussian distribution 
but instead of V it carries the sum V + U = D  
(Scheringer & Reitz, 1976). Thus, if a Gaussian distri- 
bution of the dynamic density with the smearing tensor 
D is given, and the vibration tensor U is known, then 
the thermal deconvolution can be carried out at once. 
First one calculates 

V = D - U ,  (10) 

and then the true density from (1). (Of course, in actual 
practice D - U  must be positive definite.) It is obvious 
that the thermal deconvolution can be performed not 
only for the peak maximum (x = 0), but also for the full 
Gaussian peak (x #- 0). 

Numerical  results 

In order to gain an impression of the magnitude of the 
deconvolution effects to be expected we first have 
calculated the deconvolution with five hypothetical 
peaks. V, U, and D were chosen to be isotropic in 
order to obtain exact results. The termination limits are 
( s in  0max)//]. = 0"65, 0"75, and 1"00 •- 1. The values of V 
f r o m  0"04  t o  2-00 A 2 roughly cover the region which 
one encounters with deformation and valence densities. 
V =0.15 to 0.17 ~2 (P4 in Table 1) approximates a C-C 
bond peak. We draw this conclusion from a compari- 
son of the values of the Fourier transform (2) with 
Fritchie's (1966) Table l(b) scattering curves for bond 
peaks. The thermal deconvolution was carried out for 
U = 0-008, 0-016, and 0-048 ~2. With molecular crystals, 
these values roughly correspond to 30, 100 and 300 K 
respectively. With q in electrons, V and U in ~2 the 
calculated peak heights are in e A-3. The results are 
presented in Table 1. With P4, which roughly corre- 
sponds to a C-C bond peak except for the charge q, the 
true a 0"65 ~e k height is reduced by 3"6 ~o for (sin 0max)/2 = 

- With the sharper peaks P1 and P2, the re- 
duction due to series termination is much larger, 45 
and 199/o respectively for (sin 0max)/,~=0"65 ~-1 .  The 
effect of thermal deconvolution at room temperature 
(U = 0.048 A 2) is already considerable with P4. One has 
to enlarge the observed peak height by 76 ~o in order 
to gain the true height. The considerable effect of 
thermal smearing on the peak heights was also ob- 
served by Hase, Reitz & Schweig (1976) with thiourea. 
For the lone-pair electron peak of the S atom these 
authors found that the peak height of the static density 
was reduced to about 50 ~o by thermal smearing at 
room temperature. 

In order to demonstrate how to carry out the de- 
convolution with an actual example, we selected p- 
nitropyridine N-oxide, for which X-ray and neutron 
data were collected at 30 K by Wang, Blessing, Ross & 
Coppens (1976) - hereinafter referred to as WBRC. 
WBRC published three X - N  maps for the three 
termination limits (sin 0max)/2=0"65, 0"75, and 1-00 
A-1. For our analysis we have chosen the two bond 
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peaks at C(9)-C(10) and C(8)-C(9), and the two lone- 
pair electron peaks at 0(2) and 0(3). The peak heights 
were estimated from WBRC's density maps. For the 
vibration tensors U we have used an isotropic average 
(for reasons of simplicity), namely the arithmetic mean 
of the diagonal components as given by WBRC. This 
average was reduced by a factor of 0"65 for the two 
bond peaks because internuclear density units have a 
vibration tensor which is smaller than the average 
tensor of the adjacent atoms (Scheringer, 1977). In 
fitting the Gaussian distribution to the observed peak 
heights we used three parameters, q, DIx=D22, and 
D33. The fitting was carried out by successive trials, 
four trials being sufficient. The results are listed in 
Table 2. The figures in the columns headed Xo.a and 
Zo.1 give an impression of the shape of the Gaussian 
peak. The effect of deconvolution is particularly large 
for the lone-pair electron peak P4: With (sin 0max)/2 = 
0.65 A-1 and T =  30 K, the observed peak height of 
0.44 e A-3 has to be multiplied by a factor of 1-79 so 
that the true peak height of about 1.23 e A -3 is 
established. 

We have also fitted the four WBRC peaks with an 
isotropic smearing tensor, i.e. with only two parameters 
q and D. The peak heights obtained are nearly the 
same as those given in Table 2. After correction for 
series termination the four peak heights were 0.64, 

0"86, 0-94 and 0-84 e A-3;  after thermal deconvolution 
they were 0"70, 0"96, 1-27 and 1.29 e A-3. With P4 a 
relatively large difference from the value in Table 2 of 
0-06 e ~ - 3  is found, which probably arises from the 
fact that a Gaussian distribution cannot be fitted so 
well to P4 as to the other peaks, cf Table 2. On the 
whole, the calculation with an isotropic smearing ten- 
sor confirms our above statement that the precise 
reproduction of the anisotropy is not as important in 
the peak-fitting procedure. 

The numerical results show that the peak heights are 
usually reduced more by thermal smearing than by 
series termination. We can discuss this more precisely 
if we put the termination function (Rees, 1976) and the 
thermal smearing function on the same scale. In order 
to do this we have to ensure that the two functions have 
the same value at x = 0. Thereby, a given termination 
limit is assigned to a certain isotropic vibration com- 
ponent. For (sin 0 m a x ) / 2 = 0 " 6 5  , 0"75 and 1"00 A-~ we 
find the vibration components U = 0.0362, 0"0272 and 
0-0153 ,~2 respectively. The deconvolution effect for 
U =0"0153 A 2 may be read from Table 1 in the column 
headed U = 0-016 )~2. In order to expand upon the data 
of Table 1, we have calculated the heights of peaks 
P1 and P5 for U=0.0272 and U=0"0362 A 2. The 
respective heights are 21.9 and 135"5 e A-3 for P1, and 
0.44 and 0-48 e ./k-3 for P5. With these data added to 

Table 1. Heights of five hypothetical Gaussian peaks with isotropic smearing, D = V + U 

q =0-5 e for all peaks. The final column gives the values of(sin 0)/2 for which the ratio of the Fourier transforms, f [ (s in  0)/2]/f(0), is equal to 
0.01. 

Series termination Thermal deconvolution 
at (sin 6)/2 (/~ - l) for U (A 2) 

Peak D (A 2) 0.65 0.75 1.0 m 0.008 0.016 0-048 [(sin 6)/21o.ol 

P1 0"04 2.20 2.72 3.58 3-97 5.55 8-54 - 1.21 
P2 0"07 1-38 1-54 1.69 1-71 2-06 2-53 9.73 0.92 
P3 0-10 0.92 0-97 1.00 1.00 1-14 1-30 2.68 0.77 
P4 0.15 0-53 0.54 0.55 0-55 0-59 0.65 0.97 0.63 
P5 0.20 0"35 0.35 0-35 0-35 0.38 0.40 0-54 0-56 

Table 2. Gaussian peak fitting to four peaks of WBRC's density maps 
x0.1 and Zo.1 denote the distances from the peak centre in the x and z directions, respectively, where the Gaussian peak (with hmax = oo) has 
decreased to a density of 0.1 e A -3. For P1 and P2 the z axis refers to the direction of the bond, for P3 and P4 it refers to the line through the 
oxygen nucleus and the peak centre. Peak heights are in e A-3. Lp stands for lone pair. 

Peak q (e) 
P1, C(9)-C(10) 0.219 
P2, C(8)-C(9) O. 194 
P3, Lp 0(2) 0.182 
P4, Lp 0(3) 0.123 

Peak heights for series termination at (sin 6)/2 (A- 1) 
Gaussian parameters 0.65 0.75 1.0 oo 

DII (A 2) Daa(A 2) Xo.t(A) Zo.1(A) WBRC Gauss WBRC Gauss WBRC Gauss Gauss 
0.075 0.084 0.53 0"56 0-54 0.54 0.58 0-59 0-64 0.64 0.64 
0.048 0.087 0.47 0.62 0-62 0-62 0-72 0-72 0.85 0.84 0.87 
0.070 0-030 0.57 0.38 0.62 0.62 0-72 0.74 0.92 0.90 0-95 
0.055 0.030 0.49 0.37 0.44 0.49 0-60 0.59 0.75 0"75 0-82 

Peak heights after 
Peak U (A 2) thermal deconvolution 

P1 0.0043 0-70 
P2 0.0041 0-98 
P3 0"0090 1.31 
P4 0"0100 1-23 

AC 33A-5 
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Table 1 we can conclude that the effects of thermal 
smearing are much larger than those of series termina- 
tion. 

The small values of the charges q as given in Table 2 
indicate that the deformation density peaks have 
smaller 'occupancies' than the valence density peaks. 
Fritchie (1966) used q-0.863 electrons for the C-C 
valence peaks; this order of magnitude was confirmed 
by Coppens (1969). The small values of q for the peaks 
of the deformation densities arise from the fact that, 
by subtracting the density of the full isolated atoms 
from the density of the molecule, a large amount of the 
charge is also taken from the region of the bond. On 
the other hand, the magnitude of q is not of primary 
importance because the attributing of charge to the 
bonds and to the cores is physically not uniquely de- 
fined. A small increase of the region 'bond' gives rise to 
a large increase of the charge (occupancy), a phenome- 
non also observed by Hellner (1976). 

Conclusion 

Although our results for the deconvolution effects were 
obtained with Gaussian peaks, the order of magnitude 
is generally valid. Any peak can be represented by a 
sum of Gaussian distributions centred at different posi- 
tions, to any desired degree of accuracy. As integration 
and summation can be interchanged, the convolution 
integral for a given peak can be represented by a sum 
of convolution integrals for Gaussian peaks. The main 
part of a given peak can usually be represented by one 
Gaussian peak to a reasonable approximation. Hence, 
our peak-fitting procedure will yield just as reasonable 
a result. In particular, the condition that the peak 
heights be correctly represented for several limits of 
termination proved to be a good criterion for deter- 
mining the Gaussian distribution. For centrosymme- 
tric peaks the procedure could be extended by fitting 
two or more Gaussian distributions to the observed 

peak. This will certainly yield better results, but in 
most cases such effort will hardly be necessary. 

The reconstruction of the true peak can, of course, 
only be performed where a real peak can be observed 
in a density map. In particular, the cusps at the atomic 
nuclei cannot be reconstructed since they disappear in 
experimental maps. Therefore, our method does not 
allow us to reconstruct the static density in every 
detail, but it does provide a means of estimating the 
true heights of the observed peaks. 

If one compares density maps which, on the one 
hand, are obtained by experiment, and on the other, 
by quantum-chemical calculation, both corrections are 
usually necessary. The correction for thermal smearing 
is usually the larger; fortunately its treatment is math- 
ematically simpler and can in many cases be reasonably 
performed. The correction for series termination is 
mathematically less tractable, but should be performed 
with experimental investigations of a high standard. 
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